On uniquely partitionable planar graphs
نویسندگان
چکیده
Let ~1,22 . . . . . ~,; n/>2 be any properties of graphs. A vertex (~L, ~2 . . . . . J~,,)-partition of a graph G is a partition (V1, l~,...,/7,,) of V(G) such that for each i = 1,2 . . . . . n the induced subgraph G[Vi] has the property ~i. A graph G is said to be uniquely (~1,~2 . . . . . ~,)-partitionable if G has unique vertex (2~1, ~2 , . . . , ~,)-partition. In the present paper we investigate the problem of the existence of uniquely (~1,~2 . . . . , ~n)-partitionable planar graphs for additive and hereditary properties ~1, ~2 , . . . , ~ , of graphs. Some constructions and open problems are presented for n = 2. (~) 1998 Elsevier Science B.V. All rights reserved
منابع مشابه
Remarks on the existence of uniquely partitionable planar graphs
We consider the problem of the existence of uniquely partitionable planar graphs. We survey some recent results and we prove the nonexistence of uniquely (D1,D1)-partitionable planar graphs with respect to the property D1 ”to be a forest”.
متن کاملUniquely partitionable planar graphs with respect to properties having a forbidden tree
Let P1, P2 be graph properties. A vertex (P1,P2)-partition of a graph G is a partition {V1, V2} of V (G) such that for i = 1, 2 the induced subgraph G[Vi] has the property Pi. A property R = P1◦P2 is defined to be the set of all graphs having a vertex (P1,P2)-partition. A graph G ∈ P1◦P2 is said to be uniquely (P1,P2)-partitionable if G has exactly one vertex (P1,P2)-partition. In this note, we...
متن کاملThe order of uniquely partitionable graphs
Let P1, . . . ,Pn be properties of graphs. A (P1, . . . ,Pn)-partition of a graph G is a partition {V1, . . . , Vn} of V (G) such that, for each i = 1, . . . , n, the subgraph of G induced by Vi has property Pi. If a graph G has a unique (P1, . . . ,Pn)-partition we say it is uniquely (P1, . . . ,Pn)partitionable. We establish best lower bounds for the order of uniquely (P1, . . . ,Pn)-partitio...
متن کاملOn infinite uniquely partitionable graphs and graph properties of finite character
A graph property is any nonempty isomorphism-closed class of simple (finite or infinite) graphs. A graph property P is of finite character if a graph G has a property P if and only if every finite induced subgraph of G has a property P . Let P1,P2, . . . ,Pn be graph properties of finite character, a graph G is said to be (uniquely) (P1,P2, . . . ,Pn)partitionable if there is an (exactly one) p...
متن کاملCriteria of the existence of uniquely partionable graphs with respect to additive induced-hereditary properties
Let P1,P2, . . . ,Pn be graph properties, a graph G is said to be uniquely (P1,P2, . . . ,Pn)-partitionable if there is exactly one (unordered) partition {V1, V2, . . . , Vn} of V (G) such that G[Vi] ∈ Pi for i = 1, 2, . . . , n. We prove that for additive and induced-hereditary properties uniquely (P1,P2, . . . ,Pn)-partitionable graphs exist if and 32 I. Broere, J. Bucko and P. Mihók only if ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 191 شماره
صفحات -
تاریخ انتشار 1998